LEYES APLICABLES EN CIRCUITOS

LEY DE OHM

La Ley de Ohm establece que "La intensidad de la corriente eléctrica que circula por un conductor es directamente proporcional a la diferencia de potencial aplicada e inversamente proporcional a la resistencia del mismo", se puede expresar matemáticamente en la siguiente ecuación:

I=V/R


Segun unidades del Sistema internacional, tenemos que:
I = Intensidad en amperios (A)
V = Diferencia de potencial en voltios (V)
R = Resistencia en ohmios (Ω).

Esta ley no se cumple, por ejemplo, cuando la resistencia del conductor varía con la temperatura, y la temperatura del conductor depende de la intensidad de corriente y el tiempo que esté circulando. La ley define una propiedad específica de ciertos materiales por la que se cumple la relación:

V=I.R

Un conductor cumple la Ley de Ohm sólo si su curva V-I es lineal, esto es si R es independiente de V y de I.

Ej: Circuito mostrando la Ley de Ohm: Una fuente eléctrica con una diferencia de potencial V, produce una corriente eléctrica I cuando pasa a través de la resistencia R

LEY DE KIRCHHOFF

Las dos primeras leyes establecidas por Gustav R. Kirchhoff (1824-1887) son indispensables para los cálculos de circuitos, estas leyes son:

1. La suma de las corrientes que entran, en un nudo o punto de unión de un circuito es igual a la suma de las corrientes que salen de ese nudo. Si asignamos el signo más (+) a las corrientes que entran en la unión, y el signo menos (-) a las que salen de ella, entonces la ley establece que la suma algebraica de las corrientes en un punto de unión es cero: (suma algebraica de I) Σ I = 0 (en la unión).


2. Para todo conjunto de conductores que forman un circuito cerrado, se verifica que la suma de las caídas de tensión en las resistencias que constituyen la malla, es igual a la suma de las f.e.ms. intercaladas. Considerando un aumento de potencial como positivo (+) y una caída de potencial como negativo (-), la suma algebraica de las diferencias de potenciales (tensiones, voltajes) en una malla cerrada es cero: (suma algebraica de E) Σ E - Σ I*R = 0 (suma algebraica de las caídas I*R, en la malla cerrada).



LEY DE JOULE


Podemos describir el movimiento de los electrones en un conductor como una serie de movimientos acelerados, cada uno de los cuales termina con un choque contra alguna de las partículas fijas del conductor.

Los electrones ganan energía cinética durante las trayectorias libres entre choques, y ceden a las partículas fijas, en cada choque, la misma cantidad de energía que habían ganado. La energía adquirida por las partículas fijas (que son fijas solo en el sentido de que su posición media no cambia) aumenta la amplitud de su vibración o sea, se convierte en calor. Para deducir la cantidad de calor desarrollada en un conductor por unidad de tiempo, hallaremos primero la expresión general de la potencia suministrada a una parte cualquiera de un circuito eléctrico. Cuando una corriente eléctrica atraviesa un conductor, éste experimenta un aumento de temperatura. Este efecto se denomina “efecto Joule”. Es posible calcular la cantidad de calor que puede producir una corriente eléctrica en cierto tiempo, por medio de la ley de Joule.

W=V.I


FORMULAS QUE SE EXTRAEN DE ESTAS TRES LEYES



V=Voltaje I=Corriente R=Resistencia W=Trabajo

Circuitos en Serie

RT= R1+R2+R3+...

VT=V1+V2+V3+...

IT=I1=I2=I3=...

WT=W1+W2+W3+...

Circuitos en Paralelo

1/RT=1/R1+1/R2+1/R3+... de esta formula podemos sacar la siguiente

RT=R1+ R2 x R3/R3 + R2

VT=V1=V2=V3=...

IT=I1+I2+I3+...

WT=W1+W2+W3+...

No hay comentarios.:

Publicar un comentario